Bergman-Type Reproducing Kernels, Contractive Divisors, and Dilations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviour of Reproducing Kernels of Weighted Bergman Spaces

Let Ω be a domain in Cn, F a nonnegative and G a positive function on Ω such that 1/G is locally bounded, Aα the space of all holomorphic functions on Ω square-integrable with respect to the measure FαGdλ, where dλ is the 2n-dimensional Lebesgue measure, and Kα(x, y) the reproducing kernel for Aα. It has been known for a long time that in some special situations (such as on bounded symmetric do...

متن کامل

On Weights Which Admit the Reproducing Kernel of Bergman Type

In this paper we consider (1) the weights of integration for which the reproducing kernel of the Bergman type can be defined, i.e., the admissible weights, and (2) the kernels defined by such weights. It is verified that the weighted Bergman kernel has the analogous properties as the classical one. We prove several sufficient conditions and necessary and sufficient conditions for a weight to be...

متن کامل

Weighted Bergman Kernels and Quantization

Let Ω be a bounded pseudoconvex domain in C N , φ, ψ two positive functions on Ω such that − logψ,− log φ are plurisubharmonic, z ∈ Ω a point at which − log φ is smooth and strictly plurisubharmonic, and M a nonnegative integer. We show that as k → ∞, the Bergman kernels with respect to the weights φkψM have an asymptotic expansion KφkψM (x, y) = kN πNφ(x, y)kψ(x, y)M ∞ ∑ j=0 bj(x, y) k −j , b0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2002

ISSN: 0022-1236

DOI: 10.1006/jfan.2001.3874